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Abstract

This paper examines the CPPI method (Constant Proportion Portfo-
lio Insurance) when the multiple is allowed to vary over time. A quantile
approach is introduced, which can provide explicit values of the multiple
as function of the past asset returns and volatility. These bounds can be
statistically estimated from the behaviour of variations of rates of asset
returns, using for example ARCH type models. We show how the multi-
ple can be chosen to satisfy the guarantee condition, at a given level of
probability and for particular market conditions.

JEL: C 10, G 11.
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1 Introduction

The purpose of portfolio insurance is to give to the investor the ability to limit
downside risk in bearish �nancial market, while allowing some participation
in bullish markets. There exist several methods of portfolio insurance: OBPI
(Option Based Portfolio Insurance), CPPI (Constant Proportion Portfolio In-
surance), Stop-loss, ... (see for example Poncet and Portait (1997) for a review
about these methods). Here, we are examine the CPPI method introduced by
Black and Jones (1987) for equity instruments and Perold (1986, 1988) for �xed-
income instruments (see also Black and Rouhani (1987), Roman, Kopprash and
Hakanoglu (1989), Black and Perold (1992)). The CPPI method is based on a
simpli�ed strategy to allocate assets dynamically over time. Basically, two as-
sets are involved: the riskless asset, B, with a constant interest rate r (usually
Treasury bills or other liquid money market instruments) and the risky one, S
(usually a market index).
Usually, the investor, with initial amount to invest V0, wants to recover a

�xed percentage � of his initial investment at a given date in the future T . To
obtain a terminal portfolio value VT greater than the insured amount �V0, the
portfolio manager keeps the portfolio value Vt above the �oor Ft = �:V0:e�r(T�t)

at any time t in the period [0; T ]. For this purpose:

� The amount et invested in the risky asset is a �xed proportion m of the
excess Ct of the portfolio value over the �oor.

� The constant m is usually called the multiple, et the exposure and Ct the
cushion.

� Since Ct = Vt � Ft, this insurance method consists in keeping Ct positive
at any time t in the period.

� The remaining funds are invested in the riskless asset Bt.

Both the �oor and the multiple are functions of the investor�s risk tolerance.
The higher the multiple, the more the investor will bene�t from increases in
stock prices. Nevertheless, the higher the multiple, the faster the portfolio will
approach the �oor when there is a sustained decrease in stock prices. As the
cushion approaches zero, exposure approaches zero, too. In continuous-time,
when asset dynamics have is no jump, this keeps portfolio value from falling
below the �oor. Nevertheless, during �nancial crises a very sharp drop in the
market may occur before the manager has a chance to trade. This implies that
m must not be too high (for example, if a fall of 10% occurs, m must not
be greater than 10 in order to keep the cushion positive). Advantages of this
strategy over other approaches to portfolio insurance are its simplicity and its
�exibility (see for example De Vitry and Moulin (1994), Black and Rouhani
(1987) and Boulier and Sikorav (1992)). Initial cushion, �oor and tolerance can
be chosen according to the own investor�s objective (see for example Poncet
and Portait (1997) and Prigent (2001)). Banks may bear market risks on the
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insured portfolios. In that case, banks can use, for example, stress testing since
they may bear consequences of sudden large market decreases. For instance,in
the case of the CPPI method, banks must, at least, provision the di¤erence on
their own capital if the value of the portfolio drops below the �oor. Thus, one
crucial question for the bank which promotes such funds is : what exposure to
the risky asset or, equivalently, what level of the multiple to accept? On one
hand, as portfolio expectation return is increasing with respect to the multiple,
customers want the multiple as high as possible. On the other hand, due to
market imperfections 1 , portfolio managers must impose an upper bound on the
multiple:

� First, if the portfolio manager anticipates that the maximal daily historical
drop (e.g. �20 %) will happen during the period, he chooses m � 5 which
leads to low return expectation. Alternatively, he may consider that the
maximal daily drop during the management period will never be greater
than a given value (e.g. �10%). A straightforward implication is to choose
m according to this new extreme value (e.g. m � 10). Another possibility
is to take account of the occurrence probabilities of extreme events in the
risky asset returns.

� Second, he can adopt a quantile hedging strategy. In this case, he deter-
mines the multiple as high as possible but so that the portfolio value will
always be above the �oor at a given probability level (typically 99%).

The answer to this latter question has important practical implications. The
determination of the multiple according to quantile conditions have been exam-
ined for instance in Prigent (2001) in the case of a Lévy process and in Bertrand
and Prigent (2002), using extreme value theory. Hamidi, Jurczenko and Mail-
let (2006) also consider a modi�ed quantile hedging strategy and shows how a
conditional multiple can be determined.
In this paper, we also determine how the portfolio manager can choose the

value of the multiple according to market �uctuations. This allows the introduc-
tion of a conditional multiple. To illustrate our approach, we consider several
quantile conditions and introduce a quite general Garch type model. Our re-
sults prove that we can determine a conditional multiple as functions of state
variables. These latter ones are the past stock logretruns and volatilities.
The paper is organized as follows. Section 2 presents the basic properties

of the CPPI model. Section 3 introduces the modi�ed CPPI method with a
conditional multiple, based on various quantile conditions. In particular, upper
bounds on the multiple are provided. Section 4 presents some simulations of
our approach.

1For example, portfolio managers cannot actually rebalance portfolios in continuous time.
Additionally, problems of asset liquidity may occur, especially during stock markets crashes.

3



2 The Model

2.1 The �nancial market

Consider two basic �nancial assets: a riskless asset, denoted by B, and a risky
asset denoted by S (a �nancial stock or index price).
Changes in asset prices are supposed to occur at discrete times along a whole

period [0; T ].
The riskless asset evolves according to a deterministic rate denoted by r.
The variations of the stock price S between two times tk and tk+1are de�ned

by:
�Stk+1 = Stk+1 � Stk :

Since we search an upper bound on the multiple m (see Proposition 1 in the
following), we have to focus on the left hand side of the probability distribution

of
�Stk+1
Stk

. Thus, we introduce the notation :

Xk+1 = �
�Stk+1
Stk

=
Stk � Stk+1

Stk

So Xk denotes the opposite of the relative jump of the risky asset at time tk:
In fact, when we want to determine an upper bound on the multiple m, we

have only to consider positive values of X.
Denote by Mn; the maximum of the �nite sequence (Xk )1�k�n. We have:

Mn =Max(X1; :::; Xn):

2.2 The CPPI portfolio

Denote by Vk the value of the portfolio at time tk. As explained in the introduc-
tion, the CPPI method is based on the following portfolio insurance condition:

� There exists a deterministic �oor Fk such that at any time tk, the value
Vk must be above the �oor.

� The total amount ek invested on the underlying asset S is equal to mCk
where the cushion Ck represents the di¤erence Vk �Fk between the port-
folio value and the �oor.

� The multiple m is a nonnegative constant.

� The remaining amount (Vk � ek) is invested on the riskless asset with a
deterministic rate rk for the period [tk�1; tk] :

The higher the multiplem, the higher the amount invested on the risky asset.
Therefore, a speculative investor would choose high values for m. Nevertheless,
in this case, his portfolio is riskier and as shown in what follows, his guarantee
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may no longer hold. Indeed, we easily deduce that the portfolio value is solution
of

Vk+1 = Vk � ekXk+1 + (Vk � ek)rk+1,

from which, we obtain the dynamics of the cushion :

Ck+1 = Ck [1�m Xk+1 + (1�m)rk+1]

Since, for all times tk; the cushion must be positive, we get �nally the con-
dition : for all k � n,

�mXk + (1�m)rk � �1

In fact, since rk is relatively small, the previous inequality yields to the following
relation that gives an upper bound on the multiple:

Proposition 1 The guarantee is satis�ed at any time of the management period
with a probability equal to 1 if and only if

8k � n;Xk �
1

m
or equivalently Mn =Max(Xk)k�n �

1

m
:

Since the right end point d of the common distribution F of the variables
Xk is positive, we deduce that the insurance is perfect along any period [0; T ] if
and only if m is smaller than 1

d .

For example, if the maximal drop is equal to 20%, then d = 0; 2. Thus m
must be smaller than 5.

2.3 Quantile conditions

The previous condition, which is rather strong, can be modi�ed if a quantile
hedging approach is adopted, like for the Value-at-Risk (see Föllmer and Leukert
(1999) for recent application of this notion in �nancial modelling) : for example,
an auxiliary �oor can be chosen above the initial �oor and the new condition
is to guarantee that the portfolio value will be always above this new �oor at a
given probability 1� �: This gives the following relation for a period [0; T ]:

P[Ct � 0;8t 2 [0; T ]] � 1� �;

or, equivalently, if MT denotes the maximum of the Xk for times tk in [0; T ] :

P[8tk 2 [0; T ] ; Xk �
1

m
] = P[MT �

1

m
] � 1� �:

Note that, since m is nonnegative, the condition Xk � 1
m is equivalent to

XkI0�Xk
� 1

m .
Then we can detail the quantile hedging condition. For this, introduce the

function F�1MT
de�ned as the inverse of the distribution function F which is

assumed to be strictly increasing. Then, we get (see Prigent (2001)) :
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Proposition 2 For small rk;we have approximately the following condition:

m � 1

F�1MT
((1� �))

:

Additionally, if the sequence (Xk)k is i.i.d. with common cdf FMT
, then we

have:
m � 1

F�1
�
(1� �) 1T

� :
This condition gives an upper limit on the multiple m which is obviously

higher than the standard limit 1
d .

3 CPPI with a conditional multiple

3.1 Conditional multiple

The simplicity and �exibility of the CPPI method allows the introduction of
several extensions:

� First, we can introduce a stochastic �oor, in particular to keep past pro�ts
from rises in the stock market. For example, Estep and Kritzman (1988)
have introduced the Time Invariant Portfolio Protection (TIPP). This
method is based on the following guarantee condition:

Vt � k �max(Pt; sup
s�t

Vs);

where k is an exogenous parameter which lies between 0 and 1. In this
case, the investor does not want to lose more than a given percentage of
the maximum of his past portfolio values. This strategy is of CPPI type
but with a stochastic �oor, given by k �max(Pt; sups�t Vs):

� Second, the multiple can be no longer �xed but determined from market
and portfolio dynamics:

For instance, Prigent (2001) introduces a more general exposure function
e(t;X) de�ned on [0; T ]� R+; positive and continuous.

This new exposure e has the following form:

et = e(t; Ct):

Then, conditions on e(t;X) must be imposed such that the cushion
always is positive.

1) If the cushion is nil, then the exposure must be equal to 0:

e(t; 0) = 0:
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2) If the relative sizes of jumps �SS have a lower bound d (negative),
then, for any (t;X); we must have:

e(t;X) � �1
d
X:

Another possibility is to chose the multiple according to asset values, turbu-
lence, and market volatility, as proposed by Hamidi et al. (2006). In particular,
they use a regression quantile method, as introduced by Engel and Manganelli
(2004).
In what follows, we examine the problem of the determination of a con-

ditional multiple, using a quantile condition. To illustrate our approach, we
assume that the risky asset logreturn follows an Arch type model.

3.2 Quantile Hedging and conditional multiple

3.2.1 Quantile condition

The quantile condition is de�ned by:

P[8t; Ct > 0] � 1� �: (1)

This condition can be deduced for su¢ cient assumptions. For instance, we
have the following result:

Proposition 3 Consider the �ltration (Ftk)k generated by the observations of
the arithmetical returns (�Xk)k.
Introduce the assumption (A1):

8k;P[Ctk > 0
��Ct1 > 0; :::; Ctk�1 > 0 ] � (1� �)1=T :

Consider also the assumption (A2):

8k;PFtk�1 [Ctk > 0] � (1� �)1=T :

Finally, introduce the condition (A3):

8k;PGtk�1 [Ctk > 0] � (1� �)1=T ;

where Gtk�1 is the ��algebra generated by Ftk�1 and the random event�
Ctk�1 > 0

	
.

Each of these three assumptions implies Property (1).

Proof. Suppose (A1) is satis�ed. Then, using the equality:

P[Ct1 > 0; :::::CT > 0] = P[Ct1 > 0]� P[Ct2 > 0 jCt1 > 0 ]� :::
:::� P[CT > 0 jC1 > 0; ::::CT�1 > 0 ];

we deduce the result.
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Suppose now that (A2) is satis�ed.
We use the following lemma: for any random variables X and Y;

PY [X < 0] � a) PY 2B [X < 0] � a;8B � Rk�1:

Let:
X = Ctk and Y = (Xt1 ; :::::::::::::Xtk�1):

Introduce the set B de�ned by:

B =
�
Ct1 > 0; ::::::::::::::Ctk�1 > 0

	
:

Then, we have:

8k;PCt1>0;::Ctk�1>0[Ctk > 0] � (1� �)1=T ;

from which, we deduce that assumption (A1) is satis�ed, which implies Prop-
erty
(1).

In what follows, we focus on Conditions (A2): PFtk�1 [Ctk > 0] � (1� �)1=T :
Recall that the cushion value is determined from the following relation2

Ctk = Ctk�1 � (1�mtk�1 �Xtk) > 0:

The guarantee condition at any time tk is: Ctk > 0:
Case 1: (Ctk�1 > 0)

Ctk > 0() 1�mtk�1 �Xtk > 0:

Case 2: (Ctk�1 < 0)

Ctk > 0() 1�mtk�1 �Xtk < 0:

As it can be seen, at any time tk�1; we have to choose a value of the multiple
mtk�1 such that, at time tk; we still have Ctk > 0:
Consequently, we can search mtk�1 of the following type:

mtk�1 = gtk�1 � ICtk�1>0 + htk�1 � ICtk�1<0;

where both are random variables which are Ftk�1�measurable.
Condition (A3) implies condition (A1). Thus, it also implies Property (1).

2Since we consider small time intervals (for example, daily rebalancing), we set rk = 0.
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3.2.2 Determination of the multiple

In what follows, we search for explicit forms of the random variables gtk�1
and htk�1 : We assume that the risky asset logreturn Y follows a Garch(p,q)
model. As it well-known, this kind of dynamics is quite suitable to describe asset
�uctuations in a discrete-time setting. The ARCH (Autoregressive Conditionally
Heteroscedastic) models, introduced by Engle (1982), are speci�c non-linear
time series models. They can describe quite exhaustive set of the underlying
dynamics. They have been largely applied on macroeconomics and statistical
theory.
The GARCH is de�ned in the following way. Consider the logreturn Y :

Ytk = ln

�
Stk
Stk�1

�
)
Stk � Stk�1
Stk�1

= exp(Yk)� 1:

Consider the systems of auto regressive equations:�
Yk = �0 +

Pp
i=1 �i � Ytk�i + �k � �k;

�(�k) = � + C0(�k�1) + C1(�k�1)� �(�k�1);

where �k denotes the volatility, the sequence (�k)k is i.i.d with common pdf
f > 0 and �, C0(:); and C1(:) are deterministic functions. In particular, we
assume that the function � : R+ ! R is strictly increasing.
The information delivered by the observation of risk asset returns is gener-

ated by the (�t1 ; :::::�tk�1)k:
We have:

Ftk�1 = � � algebra (�t1 ; :::::�tk�1):
Thus the random variables gtk�1 and htk�1 are deterministic functions of

(�t1 ; :::::�tk�1):
Therefore, we have to search for a multiplemtk which has the following form:

mtk�1 = g(tk�1; Yt1 ; ::::::; Ytk�1 ; �t1 ; ::::::�tk)� ICtk�1>0
+h(tk�1; Yt1 ; ::::::; Ytk�1 ; �t1 ; ::::::�tk)� ICtk�1<0:

Remark 4 Note also that the random variables Ytk�1 are deterministic func-
tions (�t1 ; :::::�tk�1): But, for a better �nancial interpretation of the multiple, we
explicitly introduce functions of (Yt1 ; ::::::; Ytk�1) itself.
Indeed, we examine how the conditional multiple depends on both the volatil-

ity levels on the past logreturns. These two kinds of variables are here the state
variables.

In order to determine the conditional multiple, two cases have to be distin-
guished3 :

� The cushion at time tk�1 is non negative: Ctk�1 > 0:

� The cushion at time tk�1 is non positive: Ctk�1 < 0:
3Since we assume that the pdf of the random variables � is strictly positive, the probability

of the event Ctk�1 = 0 is null.
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Case 1: Ctk�1 > 0 The quantile condition (A2) is the following:

PFtk�1 [1 +mtk�1 �
�Stk
Stk�1

> 0] � (1� �)1=T ;

which is equivalent to:

PFtk�1 [mtk�1(exp(Ytk)� 1) > �1] � (1� �)1=T

At time tk, we have two cases:�
exp(Ytk) < 1 : Stk < Stk�1 (S decreases),
exp(Ytk) > 1 : Stk > Stk�1 (S increases).

We assume that the multiple mtk�1 is non negative (it is the standard as-
sumption. It corresponds to a long position on the risky asset).
Then, we deduce:

PFtk�1 [mtk�1(exp(Yk)� 1) > �1) =

PFtk�1 [mtk�1(exp(Yk)� 1) > �1 \ (exp(Yk)� 1) > 0]+

PFtk�1 [mtk�1(exp(Yk)� 1) > �1 \ (exp(Yk)� 1) < 0]

= PFtk�1 [exp(Yk)�1 > 0]+PFtk�1 [mtk�1(exp(Yk)�1) > �1\(exp(Ytk)� 1) < 0]
Since we have:

mtk�1(exp(Yk)� 1) � �1) Ytk � ln(1�
1

mk�1
);

then

PFtk�1 [mtk�1(exp(Yk)�1) > �1) = P
Ftk�1 [Ytk > 0]+P

Ftk�1 [0 > Ytk > ln(1�
1

mk�1
)];

= PFtk�1 [Ytk > ln(1�
1

mtk�1

)] = 1� FFk�1 [ln(1� 1

mk�1
)]| {z } :

Therefore, the quantile condition

PFtk�1;Ctk�1>0[Ctk > 0] � (1� �)1=T ;

is equivalent to:

1� Fzk�1 [ln(1� 1

mtk�1

)] � (1� �)1=T ;

and also to:

ln(1� 1

mtk�1

) � (Fzk�1)�1
�
[1� (1� �)1=T ]

�
and �nally, we have:
1-1) If exp[(Fztk�1 )�1 � [1� (1� �)1=T ]] > 1; since mtk�1 is assumed to be

non negative, the quantile condition is
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already satis�ed.

1-2) If exp[(Fztk�1 )�1 � [1 � (1 � �)1=T ]] < 1; then mtk�1must satisfy the
following constraint:

mtk�1 �
1

1� exp[(Fztk�1)�1
�
[1� (1� �)1=T ]

�
]]
:

Let us examine the two previous subcases. They are based on the sign of
the term:

(Fztk�1)�1
�
[1� (1� �)1=T ]

�
:

Consequently, we must study the conditional cdf Fztk�1 : Recall that we
assume (GARCH(p,q) model):�

Yk = �0 +
PP

i=1 �i � Ytk�i + �k � �k;
�(�k) = � + C0(�k�1) + C1(�k�1)� �(�k�1):

Lemma 5 For any real numbers a and b (b > 0) and for any random variable
� with pdf f�, we have:

P[a+ b� � x] = P[� < x� a
b
] =

Z x�a
b

�1
f�(u)du:

Thus the pdf of a+ b� is given by:

f(x) =
1

b
� f�(

x� a
b
):

We apply this lemma by setting:8>><>>:
a+ b� = Ytk ;
� = �tk ;

a = �0 +
PP

i=1 �i � Ytk�i ;
b = �k > 0:

We get:

f
zk�1
Yk

(y) =
1

�tk
� f�

 
y � (�+

PP
i=1 Ytk�i)

�tk

!

F
zk�1
Yk

(y) = F

 
y � (�+

PP
i=1 Ytk�i

�tk

!
;

where F denotes the common cdf of the random variables �k:
Thus, we deduce:
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� The condition in subcase (1-1) is satis�ed if and only if

�0 +
PX
i=1

�i � Ytk�i + �k � F�1(1� (1� �)1=T ) > 0:

� The condition in subcase (1-2) is satis�ed if and only if

�0 +
PX
i=1

�i � Ytk�i + �k � F�1(1� (1� �)1=T ) < 0;

in which case, the conditional multiple must satisfy:

mtk�1 �
1

1� exp[(�0 +
PP

i=1 �i � Ytk�i) + �k � F�1(1� (1� �)1=T )]

Remark 6 The previous result shows that, if at time tk�1, the auto regressive
terms �0+

PP
i=1 �i�Ytk�i and the conditional volatility �k are su¢ ciently high,

then the logreturn Ytk has a su¢ ciently high probability to be positive and thus,
there is no constraint on the multiple at time tk�14 :

Case 2: Ctk�1 < 0 and mtk�1 > 0 As previously, the quantile condition is
given by:

PFtk�1 [1 +mtk�1 �
�Stk
Stk�1

< 0] � (1� �)1=T ;

which is equivalent to:

PFtk�1 [mtk�1(exp(Ytk)� 1) < �1] � (1� �)1=T

At time tk, we have two cases:�
exp(Ytk) < 1 : Stk < Stk�1 (S decreases),
exp(Ytk) > 1 : Stk > Stk�1 (S increases).

We assume that the multiple mtk�1 is non negative.

PFtk�1 [mtk�1(exp(Ytk)� 1) < �1] =
PFtk�1 [mtk�1(exp(Ytk)� 1) < �1 \ (exp(Ytk)� 1) > 0]

+PFtk�1 [mtk�1(exp(Ytk)� 1) < �1 \ (exp(Ytk)� 1) < 0]:

Therefore, we have:

PFtk�1 [mtk�1(exp(Ytk)� 1) < �1] =
PFtk�1 [mtk�1(exp(Ytk)� 1) < �1 \ (exp(Ytk)� 1) < 0] =
PFtk�1 [mtk�1(exp(Ytk)� 1) < �1]

4Note that F�1(1� (1� �)1=T ) is a particular value of the random variable �k (since it is
the quantile at the level (1� (1� �)1=T )).
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Consequently, we get the equivalence between the two following conditions:

PFtk�1 [1 +mtk�1 �
�Stk
Stk�1

< 0] � (1� �)1=T ;

PFtk�1 [Ytk � ln(1�
1

mk�1
)] � (1� �)1=T :

Thus, the quantile condition is also equivalent to:

Fztk�1 [ln(1� 1

mk�1
)] � (1� �)1=T ;

ln(1� 1

mk�1
) � (Fztk�1)�1

h
(1� �)1=T

i
;

(1� 1

mk�1
) � exp((Fztk�1)�1

h
(1� �)1=T

i
):

2-1) If exp[(Fztk�1 )�1[(1��)1=T ]] > 1; there is no positive solution formtk�1 :

2-2) If exp[(Fztk�1 )�1[(1� �)1=T ]] < 1; then mtk�1must satisfy the following
constraint:

mtk�1 �
1

1� exp[(Fztk�1)�1
�
[(1� �)1=T ]

�
]]
:

Thus, we deduce:

� The condition in subcase (2-1) is satis�ed if and only if

�0 +
PX
i=1

�i � Ytk�i + �k � F�1((1� �)1=T ) > 0:

� The condition in subcase (2-2) is satis�ed if and only if

�0 +
PX
i=1

�i � Ytk�i + �k � F�1((1� �)1=T ) < 0;

in which case, the conditional multiple must satisfy:

mtk�1 �
1

1� exp[(�0 +
PP

i=1 �i � Ytk�i) + �k � F�1((1� �)1=T )]
:
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Case 3: Ctk�1 < 0 and mtk�1 < 0 The quantile condition is:

PFtk�1 [1 +mtk�1 �
�Stk
Stk�1

< 0] � (1� �)1=T ;

which is equivalent to:

PFtk�1 [mtk�1(exp(Ytk)� 1) < �1] � (1� �)1=T

We have:
PFtk�1 [mtk�1(exp(Ytk)� 1) < �1] =

PFtk�1 [mtk�1(exp(Ytk)� 1) < �1 \ (exp(Ytk)� 1) > 0]
+PFtk�1 [mtk�1(exp(Ytk)� 1) < �1 \ (exp(Ytk)� 1) < 0]

= PFtk�1 [mtk�1(exp(Ytk)� 1) < �1]

= PFtk�1 [exp(Ytk) > 1�
1

mtk�1

]

Therefore the quantile condition is equivalent to:

1� Fztk�1 [ln(1� 1

mtk�1

)] � (1� �)1=T ;

which is also:

(1� 1

mk�1
) � exp((Fztk�1)�1

h
1� (1� �)1=T

i
):

3-1) If exp[(Fztk�1 )�1[1 � (1 � �)1=T ]] > 1; then mtk�1must satisfy the fol-
lowing constraint:

mtk�1 �
1

1� exp[(Fztk�1)�1
�
[1� (1� �)1=T ]

�
]]
:

3-2) If exp[(Fztk�1 )�1[1� (1� �)1=T ]] < 1; there is no negative solution for
mtk�1 :
Thus, we deduce:

� The condition in subcase (3-1) is satis�ed if and only if

�0 +
PX
i=1

�i � Ytk�i + �k � F�1
�
[1� (1� �)1=T ]

�
> 0:
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� The condition in subcase (3-2) is satis�ed if and only if

�0 +
PX
i=1

�i � Ytk�i + �k � F�1
�
[1� (1� �)1=T ]

�
< 0;

in which case, the conditional multiple must satisfy:

mtk�1 �
1

1� exp[(�0 +
PP

i=1 �i � Ytk�i) + �k � F�1
�
[1� (1� �)1=T ]

�
]
:

To summarize, we get the following result.
Denote Ztk�1 = �0+

PP
i=1 �i�Ytk�i+�k�F�1(1�(1��)1=T ) andWtk�1 =

�0 +
PP

i=1 �i � Ytk�i + �k � F�1((1� �)1=T ):

Proposition 7 The quantile condition (A2) at time tk�1 can be satis�ed as
soon as the cushion value at time tk�1 is non negative. In this case, if Ztk�1 >
0, then the multiple can take any positive value, and, if Ztk�1 < 0, then the
conditional multiple must satisfy:

mtk�1 �
1

1� exp[Ztk�1 ]
:

If the cushion value at time tk�1 is non positive, then:
- If Wtk�1 < 0; then there exist positive solutions mtk�1 ;which must satisfy

the following constraint:

mtk�1 �
1

1� exp[Wtk�1 ]]
:

- If Ztk�1 > 0; then there exist negative solutions mtk�1 , which must satisfy
the following constraint:

mtk�1 �
1

1� exp[Ztk�1 ]]
:

- If Wtk�1 > 0 or Ytk�1 > 0, there exist respectively no positive solution and
no negative solution.

Corollary 8 The quantile condition (A3) at time tk�1 can always be satis�ed.
If Ztk�1 > 0, then the multiple can take any positive value, and, if Ztk�1 < 0,
then the conditional multiple must satisfy:

mtk�1 �
1

1� exp[Ztk�1 ]
:

Remark 9 When the cushion is positive at time tk�1; the choice of the mul-
tiple is very �exible. Thus, within the quantile condition at time tk�1; we can
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add some other conditions on the multiple to better bene�t from market condi-
tions. When the cushion is negative (which happens with a small probability),
the quantile condition generally cannot be satis�ed, except for small values of
(1 � �): But, in this case, this is not a true insurance condition. Therefore,
a possible strategy is to adopt the previous condition when the cushion is posi-
tive and to invest the whole portfolio value on the riskless asset, as soon as the
cushion is negative.

4 Simulations

4.1 First case: i.i.d. returns and �xed multiple

We can determine the value of the multiple according to assumptions on logre-
turn process.
For example, suppose that St follows a geometric Brownian motion:

St+1 = St � exp((��
1

2
� �2)t+ � �

p
t� Zt);

where, in particular, Zt has a standard Gaussian distributionN(0; 1): Denote
by N its cdf.
In that case, the previous conditions are made on Ztk�1 and Wtk�1 which

now are constant:

Ztk�1 = (��
1

2
� �2)�t+ �

p
�t�N�1(1� (1� �)1=T );

and
Wtk�1 = (��

1

2
� �2)�t+ �

p
�t�N�1((1� �)1=T ):

- Consider for instance the following parameter values:�
� = 0:1;
� = 0:3:

Proposition 10 Since the �xed multiple m is positive, then the probability that
there exists a time t such that the cushion Ct is negative is given by:

1� P [8t; Ct > 0] = 1�
�
1� F

�
ln

�
1� 1

m

���T
;

where

F (x) = N

�
x� (�� 1

2 � �
2)�t

�
p
�t

�
:

In what follows, we determine the correspondence between the level of prob-
ability (1� �) and the multiple m.
For instance, we �x the value of the instantaneous rate of return: � = 5%

and consider a varying volatility.
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m (� = 0; 2) 19 20 21 22 23 24 25 26
(1� �) en % 100 99; 6 99 98:5 97:8 96:2 95 93
m (� = 0; 25) 13 14 15 16 17 18 19 20
(1� �) en % 100 100 100 99:8 99:4 98:9 95 94:5
m (� = 0; 30) 12 13 14 15 16 17 19 20
(1� �) en % 100 100 99:8 99 97:8 96 93:8 90:5
m (� = 0; 35) 9 10 11 12 13 14 15 16
(1� �) en % 100 100 99:8 99:4 97 96 94 90
m (� = 0; 40) 7 8 9 10 11 12 13 14
(1� �) en % 100 99:8 99:6 99 98:7 98 95:4 91

As shown in previous table, the volatility levels determine the multiple val-
ues. This is also illustrated by the next �gure.

Note that the higher the volatility �, the smaller the multiple value m for
�xed probability level (1� ").
For example, if T = 1 year, for daily volatilities equal to � = 0; 40�

p
1=250;

the conditional multiple varies between 7 and 14.
Recall that the usual values of the non conditional multiple are in f6; 10g :
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4.2 Dependent returns (ARCH type models)

Consider for instance the Garch(1,1) model with parameter values such as in
Nelson (1990).�

Ytk = (�� 1
2�

2
�)�t+ �tk �

p
�t� �tk ;

�tk = �tk�1 + �(a� �tk�1)�t+ 
 � �tk �
p
�t:

4.2.1 Convergence of the Garch(1,1) model to an Ornstein-Uhlenbeck
process

The continuous-time model is given by:

d�t = �(a� �t)dt+ 
dWt;

where � is the speed of convergence to the long term value of the volatility a:
The parameter 
 denotes the volatility of the volatility. We get:

�t = a� a�0 exp(��t) + 

Z t

0

exp(�(s� t) dWs:

4.2.2 Determination of the conditional multiple from Garch (1,1)
model.

Consider the following parameter values: � = 0:2; � = 0:07; � = 5; T = 250;
a = 0:2
1) Next �gure illustrate the paths of the risky asset, under the Garch as-

sumptions.
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2) Paths of the portfolio value are as follows (recall that we take V0 = 104).

3) We obtain daily logreturns whosevalues are most of the time between
�0:02% and 0:02%:

4) The volatility levels are indicated in the following �gure. For the para-
metric speci�cation that we consider, the volatility values converge to the long
term value equal to 2%:
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5) The cdf of the daily logreturns is gaussian and illustrated below:

6) For the parameter values of this example, the variations of the conditional
multiple are shown in next �gure.
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The previous values of the conditional multiple imply the insurance quantile
condition. Since these values are higher than for the standard case, better
performances can be observed when the risky asset increases. However, other
conditions can be imposed to limit downside risk, while allowing the quantile
condition.

5 Conclusion

As shown in this paper, it is possible to choose higher multiples for the CPPI
method if quantile hedging is used. Upper bounds can be calculated for each
level of probability and according to state variables. This allows the introduction
of a conditional multiple. This new multiple can be determined according to the
distributions of the risky asset logreturn and volatility. Other conditions can
be imposed on this multiple, while the quantile hedging constraint is satis�ed.
The di¤erence with the standard multiple is signi�cant. Further extensions
may allow to better take account of the potential losses, when �nancial asset
prices decrease. For example, criterion such as the Expected Shortfall can be
introduced. Other state variables can also be considered, such as exogenous
macro economic factors. Finally, the impact of transaction costs can also be
examined.
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